Strategies to regulate transcription factor–mediated gene positioning and interchromosomal clustering at the nuclear periphery
نویسندگان
چکیده
In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales.
منابع مشابه
Transcription factors dynamically control the spatial organization of the yeast genome
In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these g...
متن کاملSubnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms
On activation, the GAL genes in yeast are targeted to the nuclear periphery through interaction with the nuclear pore complex. Here we identify two cis-acting "DNA zip codes" from the GAL1-10 promoter that are necessary and sufficient to induce repositioning to the nuclear periphery. One of these zip codes, GRS4, is also necessary and sufficient to promote clustering of GAL1-10 alleles. GRS4, a...
متن کاملThree speeds of gene repositioning
Yeast use at least three different strategies to regulate how transcription factors position genes within the nucleus, < a d d a r t t y p e = " r e l " d o i = " 1 0. 1 0 8 3 / j c b. 2 0 1 5 0 8 0 6 8 " > Randise-Hinchliff et al.< / a d d a r t > reveal. In budding yeast, many genes are recruited to nuclear pore complexes when they are induced, potentially hastening the export of transcribed ...
متن کاملINO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering
Many genes localize at the nuclear periphery through physical interaction with the nuclear pore complex (NPC). We have found that the yeast INO1 gene is targeted to the NPC both upon activation and for several generations after repression, a phenomenon called epigenetic transcriptional memory. Targeting of INO1 to the NPC requires distinct cis-acting promoter DNA zip codes under activating cond...
متن کاملP 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کامل